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Abstract. Thepurpose of thispaper isto present the sol ution of time-optimal problem of the controlled
object the dynamics of whichisgivenby: & = y,y = f(z)+u, where|u| < 1and motion resistance
function f(z) = 0ifz < O, f(z) = —Aifz > Owhere0 < A < 1. That model describesdynamics
of avery important class of industrial installations. As the time-optimal problem will be understood
atransfer of theinitial statezo = (zo, yo) € R?tothetarget statez; = (1, 0), z1 > Oinaminimum
time t* < oo. There has been shown that in the formula defining resistance function f(z) there
existsavaue A = A, = 2 — /2 that plays an essential role in time-optimal structure formation.
Namely, if A < A, then the time-optimal control process is typical, analogous as in classica case
Z = u, |u| < 1,i.e thereexistsaswitching curve formed by thetrajectories of time-optimal solutions
reaching the target state and the time-optimal process is formed by at most one switching operation.
For the case A > A, we will examine two following singular phenomena.

(a) If the target state zz = (0, 0) then there exists the switching curve, dividing the state plane
into two sets, however only oneits branch isformed by the time-optimal solution reaching the target
z1 = (0,0) and generated by the control » = —1. None of solution forms the second branch of
switching curve. It isformed by a state-locus depending on the value of A only. In dependency of the
starting state zo the time-optimal control process is generated by bang-bang control with none, one
or two switching operations. Thisisthefirst singular phenomenon, because any small decrease of the
value A over A, requires to change the structure which would be able to generate the time-optimal
process.

(b) The paper shows, that if the target state zy (x1, 0), z1 > 0 then there exists a set of the starting
states from which there start two trajectories reaching the target in the same minimum time. Thisis
the second phenomenon.

Finally, some suggestions as to practical applications have been given too.

Key words. Time-optimal feedback system, singular phenomena in atime-optimal problem, global
synthesis of time-optimal feedback system.

1. Introduction

Industrial devices, such as saddles of machine tools, tracer machines, industrial
manipulators, several parts of industrial robots, or the position mechanisms of
industrial automata, need to change their position in a minimum time, particularly
whenit isnhecessary to move the mechanism before another technol ogical operation
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can proceed. Synthesis of a time-optimal control structure becomes therefore an
important, economical problem.

Dynamics of the above devices, called position mechanisms depend essentially
on motion resistance. From technical point of view we distinguish motion resistance
depending on velocity of the mechanism or on its position. If the first type of that
motion resistance is a case then the dynamics of the controlled object is given by
[5]: £ = y,9 = f(y) + u, where z, y is position and velocity of the mechanism
respectively, f isafunction of motion resistance, « is a control function. In order
to define as large as possible class of motion resistance, in particular all types
of friction, we assume that function f is piecewise continuous. Discontinuity of
the right-hand side of the above model makes the classical theory of differential
equation, aswell asthe maximum principle, impossibleto apply to the time-optimal
problem. Thisproblem hasbeen solved with the use of differential inequality theory
by assumption that both the control function and co-ordinatesare constrained: |y| <
Ym, [9] < Um- The solution mentioned above, has been used for feedback control
system creation, based on the concept of regular closed-loop system synthesis|[2],
[6, 7]. The closed-loop system created in such a way is operating analogously as
that created for the classical type of the dynamic object: & = u, |u| < 1.

If the second type of motion resistance is a case i.e. if they are depending on
the position of the mechanism only, then the dynamics of the position mechanisms
is defined by the following differential equation: & = v,y = f(z) + u.

In this paper we will work with the following mapping of position mechanism
dynamics:

&=y, z(0) = zo } L.1)
y=f(z)+u, y(0)=yo
by |u| < 1 and motion resistance function given as follows:
0, <0,
fle) = { —-A, >0, 0<A<L1 (1.2

The model (1.1), (1.2) describes dynamics of a very important class of indus-
trial installations, namely manipulators with counterweight, outriggers of position
mechanisms and alot of the like devices.

The paper dealswith particular cases of the time-optimal problem of the system
(1.1), (1.2) that will be understood as atransfer theinitial state zy = (zo, y0) € R?
to the target state z; = (z1,0),21 > 0 in aminimum time t* < oo. There has
been shown that in the formula (1.2) defining motion resistance function there
exists avalue A = A, = 2 — /2 that plays an essential role in time-optimal
structure formation. Namely, if A < A, then the time-optimal control processis
typical, analogousasin classical case & = u, |u| < 1. Thus, in the state plane there
exists a switching curve formed by standard solutions of (1.1), (1.2) reaching the
target z;. The control process is of bang-bang type and to each state belonging
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either to severa branches of this switching curve or doing to the sets resulting
from partitioning the state plane by that switching curve there are admitted the
time-optimal controls« = +1 and » = —1. Thetime-optimal control processis of
bang-bang type with at most one switching operation.

For the case A > A, wewill examine two following singular phenomena.

(@) If the target state z; = (0,0) then there exists also the switching curve,
dividing the state planeinto two sets, however only oneits branch isformed by the
solution of (1.1), (1.2) reaching the target z; = (0, 0) and generated by the control
u = —1. Noneof (1.1), (1.2) solution forms the second branch of switching curve.
It isformed by astate-locus depending on thevalue of A only. In dependency of the
starting state zy the time-optimal control processisgenerated by bang-bang control
with none, one or two switching operation. Thisis the first singular phenomenon,
because any small decrease of the value A over A, requiresto change the structure
which would be able to generate the time-optimal process.

(b) The paper shows, that if thetarget statez; = (1, 0), 1 > Othenthereexists
aset of the starting states from which there start two different trajectories reaching
the target in the same minimum time. Thisis the second singular phenomenon.

The desirability of implementing time-optimal feedback control in technical
applications has been justified in the last paragraph of the paper. Global synthesis
of thetime-optimal system requires both the global uniguenessof optimal solutions
and univocal defined sets of the states in which the switching operation of the
control function should be executed. In investigated dynamic system (1.1), (1.2)
non-unique time optimal trgjectories and essential aternation of the low of time
optimal control by increase of the value of parameter A over the critical value
Ay unfortunately eliminate the chance of standard way of global synthesis of the
time-optimal feedback system. The results of this paper indicate these resistance
functions f(z) for which there exists time-optimal global synthesis and for which
it does not. From this work there results also that revealed singular phenomena
may come into existence also by continuous motion resistance function f(x) if
only its valuesincrease on suitable small interval of the variable .

2. Preliminaries

NOTATIONS 2.1. (a) Any solution of (1.1), (1.2) by u € (—1,+1) starting from
theinitial state zo € R? will be denoted by q(t; zo), y(, Zo)).

(b) The solutions of the system (1.1), (1.2) generated by the control function
v = +1and v = —1 starting from any point z; will be denoted g (¢, z;) and
q_(t;z;) respectively or shortly (in particular in the figures) g and q_.

(c) Trajectories of the solutions g, (t; zo) and g_ (t; zo) reaching the target state
z1 will play an essential role. They will be called Terminal Trajectories, will be
denoted T+ and T~ respectively and will be defined by:

2
T+ = {q. (t;22),y < O} = {(x,y) Lx = ﬁ + a1y < 0} 2.1
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T~ ={q_(t;z1), t<0}=

2
{(x,y) LT = —% + 1+ Az, y>1/21+ A)zy;
T = —ﬁ +r1, ye [0,\/2(1+A)$1]}. (2.2)

Trajectory T intersectsthe positive semi-y-axisinthepoint noted z, = (0, y,),
wherey, = \/2(1+ A)z;. If thetarget z; = (0, 0) then, after setting 0 — x4, the
formulas (2.1), (2.2) take the forms:

T+: (x7y)x:y727y<0 )
2(1— A)

2

(2.3)
T = {(x,y) = —%,y > 0}-

(d) The negative and positive semi-y-axes will be noted respectively
B ={(2,9):2=0y>0} B"={(z,9):2=0y<0}. (24

They-axisB = B~ UB™ formsthe bound of motion resistance zone and divides
the state-plane into two following half-planes:

S ={(z,y) :x <0,y € R'}; St ={(z,y) x>0,y € R'}. (25)

(e) A time taken for transfer the state along atrajectory of any solution starting
from apoint ' and running over the pointsz”, Z"’, . . . tofinite one z* will be denoted
T(Z,2",7",...,7).

(f) Co-ordinates of any state z; will be denoted z;; and y;, i.e. z; = (z;,y;). ™

REMARK 2.2. Properties of the solutionsq_ andq, .

(a) The co-ordinates of the solution q_(¢; zg) has got the following properties.
Let yo > 0. Then, there exists atime ¢; > 0 such that y_(¢,zp) is decreasing
function on [0, 00), y1(t1,20) = O, but z_(¢,2p) is increasing function on [0, ¢4]
and is decreasing one on [t1, 00).

(b) The co-ordinates of the solution q_ (¢; o) has got the following properties.
Let yo < 0. Then, there exists atime ¢; > 0 such that y. (¢, zo) is increasing
function on [0, #1], v+ (t1,Z0) = O, but = (¢, zo) is decreasing function on [0, ¢1]
and increasing one on [t1, 0o). ]

LEMMA 2.3. Given controlled object (1.1), (1.2). The time-optimal control u*
bringing the controlled object fromany zg € R? tothetarget statezy = (1, 0),0 <
x1 1S of bang-bang type, i.e. the control functionuw = +1and u = —1.
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Figure 1. Trajectories starting from B* and B~ sets

Proof. Assume the time-optimal solution of (1.1), (1.2) does exist. Let the
trajectory of a time-optimal solution q*(¢; zp) Starting from any zo € R? and
reaching the target z; runs over the state plane intersecting y-axis finite number
of timesin the points #;, i = 1,2,..., f. Denote z, = g*(; ). Thus, the z; and
zgf denote the first and the last state in which trajectory of time-optimal solution
q* intersects y-axis. From Remark 2.2 it follows, if z, € B*[or z, € B™] then
zt € B Jor Z;** € B*]. Analogously, if z, € B*[or Z, € B"] then z,"! €
B~[or ' € B*] (see Figure 1). Thus, the time-optimal trajectory starting from
25 with the target z; lies totally in half-plane S*. Using Maximum Principle in
standard way we state that the last part of time-optimal trajectory, i.e. trgjectory
connecting zZJj with thetarget z; is of bang-bang type. In the sameway of argument
we prove that the first part of time-optimal trajectory, i.e. trgjectory connecting zo
with z} is of bang-bang type, too. Obviously, if z} € B* then z = z/, therefore
we should investigate the case z;, € B~. Using the Maximum Principlein standard
way as that in the case & = u, |u| < 1 for starting point zy € B~ and the target
z; € BT we state that the time-optimal trajectory generated by the system (1.1),
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(1.2) starting from z; € B~ and reaching 25 € BT is of the bang-bang type and
liestotally inthe set S~. This completes the proof. [

3. Dependence between Number of Time-Optimal Switching Operations
and Parameter A Value

LEMMA 3.1. Givencontrolled object (1.1), (1.2) and terminal trajectory T~ (2.2).
Then, fromech zg € T~ there starts the unique solution q_ (¢; zo) that lies totally
interminal trajectory T~ and reachesthe target z; in a minimumtime t* < oo.
Proof. Going by Lemma 2.1 we will examine the solutions generated by the
bang-bang control function » only.
A time taken for the transfer the controlled object fromzp € T~ NS to the
target z; along the terminal trajectory T~ (i.e. by the solution q_ (¢; zo))

AV/2(14+ A)x

T(20,2y,71) = Yo — 1+ A

(3.1

Assume there exists another trajectory that reachesthetarget z; inatimet' less
than minimum one, i.e. ' < t* < oo. This trajectory being of bang-bang type
should intersect semi-y-axis B™ in the point z,, = (0, y,,) suchthat y, < y,,. The
point z,, € BT may be reached along the trajectory of the g, (¢; zo) solution to the
point z; = (0,ys) € S~, where there is executed switching operation (see Figure
2). Simple computing shows that

ys € (/2(L+ A)zs, /243 — 2(1+ A)ay) (32)

where

yo >y, = \/2(L+ A)zs. (33)

So, from the point z, there startsthetrajectory of q_ (¢; zs) solution which brings
the system to the point z,, = (0,y,,) € B*. Obviously, ., < ¥'. The trajectory of
theq_(t;zs) solution starting from z; € S intersects semi-y-axis B* in the point
z,, € BT, penetratesinto S~ set, intersects z-axis in the point Z% = (z,,0) and
next reachesastate zl) = (x1,y.) (see Figure 2). From uniqueness of the solutions
q, and q_ it follows that 21 < z7,. A time taken for a transfer the system from
Zzp € T~ NS toZ over switching point z; € S™, and next over z,, and z, is
given by expression:

A}
T(207 Zg, 2y, Zy)s Zu)) =

Yuw + \/yg) —2(1+ A)z
1+ A4

V202 + 42 — 41+ A)zs — yo — yu +
(3.4)
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Figure 2.

Comparing (3.1) with (3.4) we get

T(20,2s, Zw, 2y, Zyy) — T(20, 2, 21) =

\/xf + 2211/2(1+ A)xy — Az1 > £1 — Az > 0. (3.5)

This means that dynamic object (1.1), (1.2) starting fromzp € T NS is
brought to the target z; in minimum time along the terminal trajectory T—. If the
switching operation is executed in the point z; € S* then the time taken for the
transfer of the system from zp € T~ N S to the adequate state point z/, is longer
than the above calculated by (3.4). Theway of argument istrivial. This completes
the proof of Lemma. [

Now, we are going to investigate time-optimal solution of the object (1.1), (1.2)
for selected both starting point zo and the target z;.

3.1. TIME-OPTIMAL PROBLEM FOR THE TARGET STATE z; = (0,0) =0

If the target state z; = 0 is a case then the terminal trgjectories are defined by
(2.3). Minimum time taken for the transfer the state zo € T~ tothetarget z; = 0
(obviously along the terminal trajectory T ) results from (3.1) after setting z; = 0
and is expressed by: T'(zo,21) = yo.



334 WLADY SLAW HEJMO AND JACENTY KLOCH

At first we will examine the time-optimal trajectories starting fromzg € T,
Therewill be distinguished two following cases of the motion resistance function:

() Ae[0,2—Vv2:; (i) Ae(2-V21). (3.6)

Now, we are going to show that if motion resistance function satisfies (3.6, i)
then there exists the time-optimal switching curve T = Tt UT~ where T* and
T~ are defined by (2.3). However, if motion resistance function satisfies (3.6, ii)
then there exists the time-optimal switching curve T = T,,, UT™ where T~ is
given by (2.3). The branch T, isaspecial state locus which cannot be created by
whatever solution of the system (1.1), (1.2). It will be defined in what follows. The
switching curves shown above play the same role as that in classical time-optimal
closed-loop system controlling the dynamic object described by: & = u, |u| < 1.

LEMMA 3.2. Given the controlled object (1.1), (1.2). Let starting state zo € T™
and the target state z; = (0,0) = 0.
Thesis (a) If A € (2 — +/2,1) then the transfer of the object fromzy € T* to
the target zz = 0 in minimum time ¢* < oo is performed along the trajectory
of the q_(#; zo) solution to a state z,, € S*, afterwards along the trajectory of
the q_(t;zo) solution to a state z,, € S*, afterwards along the trajectory of the
q.(t;z,,) solutionto z, € T~ andfinally fromz, along the curve T~ to the target
z; (see Figure 3).
Thesis (b) If A € [0,2 — /2] then the transfer of the object fromzg € T™ to the
target z; in minimumtime ¢* < oo is performed along the trajectory of q_ (t; zo)
solution, i.e. along thecurve T ™.

Proof. A way of argument will be grounded on Lemma 3.1 and Remark 2.2.

Starting from zo € T the object may be brought to the target z; either along
the curve T or along any other trajectory of q_ solution which on leaving T™
runsover St set and tends to intersect y-axisin the point z, € B~ (see Figure 3).

Astime-optimal trgjectories starting from zg € T™ may be taken into account
either trgjectory of g, (¢;z) solution that lies totally on the curve T or the
trajectory created consecutively by the following solutions: q_ (¢; zg) starting from
zo € T* and reaching z,, € St UB™,q,(¢;2y,) starting from z,,, and reaching
z, € T~ andfinally q_(¢; z,) reaching thetarget z; along thecurve T~ (seeFigure
3).

Time taken for the transfer zo € T+ toz; along T™ is expressed by:

T(20,21) = —1 2 (37

L et us consider the trgjectory of the solutionq_ (¢; z9),zg € T™. Thistrajectory
intersects y-axisin apoint z, = (0,y,) € B~ wherey, = yo\/2/(1 — A).

Denote by z,,, = (zm,ym) the states belonging to this trajectory between zg
and z, = (0,y,). This means that the states z,,, laid in the region determined by
the curve T and semi-axes B~ (see Figure 3). The co-ordinates of the states z,,,
satisfy the following inequalities: 0 < z,, < zo andy, < y, < 0 (seeFigure 3).
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Figure 3. SwitchingcurveT,,

Trajectory of g, (t; z,,) solution, i.e. trajectory starting from z,,, intersects semi-
axisB~ inthepoint z, = (0, y,) wherey, € [y,, 0]. Now, we are going to express
the co-ordinates of the states z,,, = (2, ym) asthe functions of y,. We get:

_ 20— (1- Ay - \/2y8+ (1+ Ay 9
™ 41— A) e 2 ‘ '

Time taken for the transfer the object from the state zy € T to any z,,, along
trgjectory of g_ solution, from z,,, over z, to z, € T~ along the trajectory of g,
solution and finally from z,, along the curve T~ to the target z; is given by the
following formula:

T(207 Zy, Zpa Zy, Zl) —

\/2(1+A)y12, + 42—y (1+ A) (V2 - AV2) Lo
1-A 1+A°

Values of time defined by (3.6) and (3.9) depend on A, yo and y,, variables only.
Thus, adifference that may exist between them may be expressed as a function of

(3.9)
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the same variable. That difference will be noted AT (A, yp, yo). It is given by:
AT (A, yp,yo) = T(20,Zm, Zp, Zn21) — T(20,21) =

V2L + A)y2 + 48—y (L+ A) (V2 — A— AV2) + 2yg
1— A2 '

Now, we are going to show that there existsa state z, = (0, y,) = 2, = (0, y)
such that

AT(A7 gpa yO) = min AT(A7 gpa yO) (311)
Yp€lyr,0]

(3.10)

Let us denote derivative of AT'(A, y,, yo) towards y,, by:
aAT(A7 Yp yO)

AT (A, yp,y0) = . 3.12
(A, 90) o (312)
From (3.10), (3.11) we get
) 1 2y,
AT (A, yp,yo) = —— V2—A—AV2 - .
1-4 V214 A)y2 + 4y3
(3.13)
After solving equation AT (A, y,, yo) = 0 we get
29p =V2-A-AV2 (314)

V204 A)y2 + 4y

From the aboveit followsthat the val ues of 1, which may minimisethefunction
AT(A, §p, yo) are defined by:

vy — yo(2A + AV2 - 2)

= .
VAL - A)(34 +24V2+ 2+ 2V/2)

Simple estimation shows that

(3.15)

2A+ AV2 -2 . 2
VAL—A)(BA+24v2+2+2y2 V1-4

which meansthat y, < y,.

Expression (3.11), by statement that co-ordinate y,, € [y,, 0] and y, < 0imply
the following conclusions:

() Ifonlyv2—A—Av2<0,ieif A€ (2— /2, 1) thenthefunction (3.11)
takesits minimum by g, € [y, 0). In other words

2, = (0,%,),7p € [yr,0) ifonly A e (2—+v21)
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(i) If only vV2— A — AV2 > 0,i.e.if A € [0,2 — /2] then the function (3.11)
takes its minimum by y, = g, = 0. In other words

2,=21=(0,0) ifonlyAe[0,2—+2
Conclusions (i) and (ii) complete the proof of Theses (a) and (b) respectively. =

Let usperceivethatif A € (2—+/2, 1) isacasethenthelocusof the statesz,,, forms
aswitching curve noted (in accordancewith Figure 3) T,,,. Using expressions(3.8),
(3.15) we define the switching curve T, by the following formula:

_ _ 2
Tn = {(W) = A [y’"’o]} 319

where

B= 24+ Av2 -2 (3.17)

VAL - A)(3A+24V2+ 2+ 2V2)

and as previously v, = y0\/2/1— A, yo < 0.
It should be emphasized that the switching curve T, is none of the trajectories
which may be formed by any one solution of (1.1), (1.2) (see Figure 3).

REMARK 3.3. From Lemma 3.2 it follows that if motion resistance function sat-
isfiesinequality (3.6, i), i.e. A € [0, 2 — v/2] then the time-optimal transfer of each
state zo € T+ holds along the trajectory of q_ (¢; o) solution, i.e. along the curve
T+ without any switching of the control function «.. However, if A € (2 —+/2,1)
then the time-optimal transfer of the object from zo € T there starts the trajec-
tory of the q_(¢; zg) solution which reaches the state z,,, € T,,, C S~ where the
switching operation is being executed. From z,, there starts the trajectory of the
. (t;z,,) solution the trajectory of which intersects semi-y-axis B™, penetrates
into S~ set and tends to reach the curve T~ in the point z, € T~ NS~ where
there should be executed the second switching operation. From z,, there starts the
trajectory of q_(¢; zp) solution which brings the object along the curve T~ to the
target z; = 0. [

Let us define in the state plane some special sets for the cases of motion resistance
function quoted above, that will be of usein the next part of the text.
(1) If A €]0,2— /2] then we will note (see Figure 4):

T =T UT*t (3.18)
R ={(z,y): («",y) € Ti = z > 2} (3.19)

R, ={(z,y) : (z",y) e T) =z > 2} (3.20)
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Figure 4. State plane partitioning

(2)If A € (2—+/2,1) then wewill note (see Figure 5):

Th+T UTy (3.22)
Ri={(z,y) : (¢« ,y) € Ty = 2 < a'} (3.22)
Rﬂ = {(xay) : (:E,ay) € T|| =T > wl} (323)

THEOREM 3.4. Given controlled object (1.1), (1.2) and target statez; = (0, 0) =0.
Thesis (a). If the motion resistance function (1.2) satisfies inequality (3.6, i), i.e.
A € [0,2 — /2] then the time-optimal control function

+1, (z,y) €T U RlJr
-1, (z,y) e T UR,

where T, T, R,*, R, aredefined by (2.3), (3.19) and (3.20) respectively.
Thesis (b). If the motion resistance function (1.2) satisfies inequality (3.6, ii), i.e.
A € (2— /2, 1) then the time-optimal control function

u*(r,y) = (3.24)

+17 (:v,y) € Tm U RIT

-1, (z,y) e TTURy/ (3.25)

u*(way) =
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Figure 5. State plane partitioning

where T, T,,, R} and R;; are defined by (2.3), (2.16), (3.22) and (3.23) respec-
tively.

Proof of Thesis (a):

(i)I1fzo € T = T~ UTT then the proof results from Lemma 2.3 and Thesis (b)
inLemma3.2.

(ii) Fromeachinitial statezg € R, there startsthe uniquetrajectory of q_(; zo)
solution reaching positive semi-z-axis in the point z; = (2, 0). Uniqueness of
q_ solutions implies that this trajectory lies totally in the set R;” and 21 < 7.
Therefore, the minimum time taken for the transfer of the object from z, € R;” to
the state z; holds along the trajectory of q_(¢; zp) solution. Any other trajectory
starting from the same zo € R,” and composed by the sequence of bang-bang
solutions g, and g_ reaches z-axis in the point zZ{ = (zf,0) where z} < zf.
Using the same concept of argument as that done in the proof of Lemma 3.1 we
state that the time taken for the transfer the object from zg to z; and from zg to z
satisfy the following inequalities:

T(20,2) < T(2,.... %), (3.26)

Elementary analysis shows that minimum time transfer of the object from z
to the curve T should be executed along the trgjectory of g_(;Z)) solution.
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Analogously minimum time transfer of the object from z{ to the curve T* should
be executed aong the trajectory of q_(¢; z{). Calculating the intervals of the time
takenfor thetransfer theobject from z; toZ/, € T* alongthetragjectory of q_(¢; z})
and from z{ to | € T along the trgjectory of q_(¢; z{) we get:

T(zy,7,) < T(z],7). (3.27)

Inequalities (3.26) and (3.27) imply that the system starting from zg € R,
reachesthe curve T in minimum time aong the trajectory of q_ (#; zp) solution.

(iii) For the case o € R;" the way of proving is the same as that used in the
previous case (ii).

Proof of Thesis (b): We prove this thesis using the same pattern of argument as
that employed in the proof of Thesis (a). [

REMARK 3.5. Thesesin Theorem 3.4 definethe control function «(z, y) operating
in a time-optimal closed-loop system synthesised in standard way. If resistance
function satisfies (4.6, i) then this system executesat most one switching operation,
however if (3.6, ii) holds then this system should be able to execute at most
two switching operations. Thus, any small increase of the parameter A over the
value 2 — v/2 requires to change the nature of the closed-loop system generating
time-optimal processes. This properties of the time-optimal process will be called
singular phenomenon. [

3.2. TIME-OPTIMAL PROBLEM FOR THE TARGET STATE 1 = (1,0),21 > 0

For this case of the target state z the terminal trajectories are defined by (2.1),
(2.2). In this chapter we will examine the time-optimal trajectories starting from
Zp = (0,0) = 0. As previously, there will be distinguished two cases of motion
resistance function defined by (4.6).

LEMMA 3.6. Giventhecontrolled object (1.1), (1.2). Let starting state zg = Oand
the target state z; = (z1,0), 21 > 0.

Thesis (a) If A € (2 — v/2,1) then the transfer the object from starting state
zp = 0 to the target z; in minimum time ¢* < oo holds along the trajectory of
the q_(¢; zg) solution to a certain state z; € S™, next along the trajectory of the
d. (t;zs) solution over the point z,, = (0,y,,) € BT to z, = (z,y,) € T~ and
finally from z,, along the curve T~ to the target z; (see Figure 6).

Thesis(b) If A < 2 — /2 then the transfer the object from z, to the target z; in
minimumtime ¢t* < oo is performed along the trajectory of g, (¢; zo) solutionto a
point z, € T~ andfinally fromz, along T~ curveto the target z; (see Figure 7).

Proof. Theproof baseson Lemma?2.3 and the propertiesof g and g, solutions
shown in Remark 2.2.

Starting from zo = 0 the object may be brought to the target z; either:

(i) along the trajectory of g, (¢; zp) solution running over S* set till to intersec-
tion with T~ inapoint z, € T~ and next the object is directly transferred to the
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(0,0) Zy

Figure 6. Trajectories starting from origin (0, 0)
Y

f

T

(0,0 Z,

Figure 7. Trajectory intersecting switching curve T~
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target z; along the trgjectory of q_ (¢; z,,) solution that lies totally in the curve T~
(see Figure 7) or

(ii) long thetrajectory of q¢; zo) to acertain pointz; € S, next from z; along
the trajectory of q_ (t; z,) solution which running over S~ set intersects y-axisin
the point z,, € B and next penetrating into S™ set reaches T~ curvein the point
z, € T—, wherey,, < y,. From z, the object is directly transferred to the target
along the trajectory of q_(t;z,) solution that lies totally on the curve T~ (see
Figure 6).

We are now going to define some special elementsin the state plane which will
be of use on the way of proving.

Thecurve T~ intersects the y-axisin the point z, = (0,y,) € BT, where

Yy =1/2(1+ A)zq. (3.28)
A time taken for the transfer the object from any statez = (z,y) € T~ to the

target z; along the trajectory of q_(¢; zog) solution, which liestotally in curve T,
is expressed by:

AT+ A
T(zz)=|" 1+4 U7 (3.29)
114 y € [0, yy].

Trajectory of the q_ (t; zg) solution starting from zg = (0, 0) = O intersectsthe
curve T~ inthepoint z, € T~ N S* (see Figure 7), the co-ordinates of which are
given by:

(1 + A)[L‘l _ I
2 ) yn - 1 . Az‘

(3.30)

Ty =

A time taken for the transfer the object from zop = 0to z, € T~ aong the
trajectory of the q_ (t; zg) and next along the trajectory of the q_(t; z,) solution
(that liestotally in T ™) to the target z; is expressed by:

/|
,I'(Zo7 Zn, Zl) = 2 1_71142 (331)

L et usconsider atransfer of the object fromzy = Otoastatez,, = (0,y,,) € BT
in the following way: aong the trajectory of the q_(¢; zg) solution to any point
z, € S and next from z, to z, = (0,4,) € BT aong the trgectory of the
. (t;zs) solution (see Figure 6). Let us define the co-ordinates of the state z, as
the functions by y,,. We have:

2

Yw Yw
g= =22 s = -T2, 3.32
R (532
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The transfer of the object from zog = 0 aong the trgjectory of the q_(¢; zp)
solution over the set S™ to z, and from this point along the trajectory of q_ (t; z,)
solutionto z,, € B takestime given by the following formula

T(0,2,2,) = yu(1+ V2). (3.33)

The transfer of the object from z,, € B along the trajectory of the q_, (¢; z,,)
solution to z, € T~ N S™ and from this point along the trajectory of q_(¢;z,)
solution to the target z; takes time given by the following formula:

V2\J2 4 21— Az oy,

T(Zy,Zn,21) = — . 3.34
( 1) 1 AVITA 14 (3.34)
The co-ordinates of the state z, € T~ N S*™ isgiven by:
201+ A)zy — o2 21— A%z + (14 A)y2
r = 20T Y yn=\/( fu A (33

Time taken for the transfer of the object from zy to z, along the trajectory of
g_ solution, from z, to z,, along the trgjectory of g, solution, from z,, to z,, along
the trgjectory of g, solution and finally from z,, to z; along the trgjectory of q_
solutionis given as:

T(0,2s, 2y, 2Zn, 21) = T(0.25,2y) + T(Zw» 21, 21) =

a(Byw + /Y5 +0)s  yuw € [0,y,] (3.36)
where
_ V2 B_(\/?—A—A\/?)\/1+A
“Ta-avira U7 V2 ’
(3.37)
§ = 2(1— Az

If only 8 > 0, i.e.if A < 2— /2 then equation (3.36) takes its minimum for
yw = 0. This means that optimal transfer of the system from zg = 0 to the target
z1 should be executed along the trajectory g, (¢; zo) running over the S™ set to the
point z, € T~ and from z, along the trajectory of the q_(¢; z,), i.e. dong the
curve T~ This completes the proof of Thesis (b).

In order to prove Thesis (a) we will consider (3.36) under assumption 5 < 0,
ieifAec(2—v21).

Thetime defined by (3.36) dependson A, 2, and y,, only. So, we will noteit as
T(0, zs, 2y, Zn,21) = T'(A, x1,y,) and its derivative towards y,, by

5T(A7 xy, yw)

I __
[T(A,fl,yw)] - 5?/11)

_ (3.39)
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After calculation derivative (3.37) we get

[T(A, 21, yu)] = ———=(B\/y2 + 0 + 12).
VY2 + 0

Calculatingequation [T'(A, 1, y)]" = 0weget that the function (3.36) reaches
its extremum for

(A+ AV2 — V2)\/21,(1+ A)
VAIL+ 4)(3+2v2) — 1]
Testing the sign of derivative (3.38) in a neighbourhood of 7, we state

(3.39)

T(0,2s, 2y, 2y, 21) = MN{T(0, z5, 2y, 2y, 21) }.

The above completes the proof of the Thesis (a) and of the Lemma. [

Setting (3.40) into (3.36) we get the minimum-time taken for the transfer the object
to the target state z;. Thus

«
T(A7 Z1, yw) |min = T(A7 Ty, gw) =

———(B\ 72 + 5 + 7))
U5+
where g, isgiven by (3.40).

REMARK 3.7. If the motion resistance function satisfies (3.6, i), i.e. A € [0,2 —
/2] the optimal transfer of the object from z, to the target z; should be executed
along the trgjectory of g, (¢; o) solution to the point z, € T~ and from z, along
the trgjectory of q_(¢;z,), i.e. along the curve T~ to the target z;. This control
processis realised with one switching operationin the statez, € T~

If the motion resistance function satisfies (3.6, i), i.e. A € (2 — v/2,1) then
the optimal transfer of the object from zg to the target z; should be executed along
the trgjectory of q_ (¢; zp) throw the set S to the point z, € S, from z, along
the trajectory of q_ (t; z,) solution over the point z, € T~ and from z, along the
trgjectory of q_(t;z,) i.e. alongthe curve T~ to thetarget z;. This control process
is realised with two switching operations executed in the point z; and z, one. =

(3.41)

4. Non-Unique Time-Optimal Trajectories

Let us denote T, the trajectory of such q_(¢; zg) solution that reaches the target
z1 = 0 (see Figure 8). Thistrajectory has been already described by (2.3). So,

Y2
Obviously, T, € S U {0}. Aspreviously by z, we denote the point in which

the switching curve T~ intersects semi-y-axis B™ (see Figure 6). Thus, z, =
(0,y,) eT-NB*,y, > 0.
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-

9+
7-+

% 2

Figure 8. Non-unique trajectories

THEOREM 4.1. Givenacontrolled object (1.1), (1.2). Letusassumethat A € (2—
V2, 1). Thereexistssuch a point zo € T, \ {0} fromwhich there start two different
bang-bang solutionsthe trajectories of which reachthetarget z; = (z1,0),z1 > 0
in the same minimumtime t* < co.

Proof. (I). Trajectory of q_(t; zo) starting from zo € T\ {0} liesin the curve
T, and tends to reach the origin (0, 0) in afinite time. After leaving the origin it
penetrates again into S~ set. Let in any point z; € S there is executed switching
operation. Thus, from z, there startsthetrajectory of q_, (¢; z,) solutionthat running
over S— set intersects negative semi-z-axis and finally intersects the semi-y-axis
B* inthe point z, = (0,vy,,) € B™. Let usassumethat y,, € [0, y,] asitis shown
in Figure 8.

The time taken for the transfer of the object from zy along T to the origin (O,
0), next along thetrajectory of q_ (¢; 0) tothepoint z; € S~ and after executing the
switching operation in z, the transfer is continued along the trgjectory of q_ (¢; z;)
solution over the point Z,, = (0,.,) € B* tothe point z, € T~ (i.e. the point of
intersection with this part of the switching curve T~ that belongs to the set S*)
and next along the trajectory of q_(¢; z,,), i.e. dong the curve T~ to the target z;,
is given by the following expression:
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4r1(1— A) + 2y!
T(20,0,25,2,,2,,21) = v w
(20,0,25, 20 20, 21) 1-—A)Vi+A
Ay;u !
Tt V2y!, + yo. (4.2)
Now, we are going to find such a value of y!, which minimises the time

T(z0,0,zs,2,,2,,21). Wemust therefore find the solution of thefollowing deriva-
tive:

8T'(Z(Ja 07 Zg, Z’,LU)

oy =0. 4.3
The solution of (4.3) is equivalent to the solution of the following equation:
da(Yuy)* + do(y,,)? +do =0, y,, € [0,y,) (4.4

where:

dy = A?(A2 —4A —4), dp=4A(—A%+54% — 104 — 4)z1,
do = 4x3(A3 — 342 —24 4 2)?

Solving (4.4) towards y,, we get:

Yoy = Yo (yo, 71, A) =

2v1(1+4) 2-V2
(A—2+\/§)\/A(A_2+2\/§)—\}2(1-%14):131(1 v )

(4.5)

Going by assumption A € (2 — v/2,1) and (3.28) simple estimation of (4.5)
shows that y,, € (0,v,), what confirms presupposition y;, € [0,y,] taken when
starting with the proving.

After setting (4.5) into (4.3) we get:

T(207 07 Zsazgu(ymxlaA) ZI Zl) =

» N

211A(3A + 224 +2)
+ Yo
1+A4

Tomin(yo, z1, A) = \/

where Z;U = (07 y;u (y07 T1, A))

Index “2” in (4.6) informs that the time-optimal transfer has been done with
two switching operations (see Figure 8).

(I1). Let us investigate the transfer of the object from zg € T\ {0} aong the
trgjectory of the g, (¢; Zo) solution which after intersecting semi-y-axis B™ in the
point z,, = (0,y,) € BT. Let usassumethat y,, € [0,y,] asit isshown in Figure
8. This assumption does that trajectory penetrates into S™ set and next intersects
switching curve T~ in the point z, € T~ N'S". This plays an essentia role in

(4.6)
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computing atime of transfer the system to the target z;. Fromz, € T~ the object
is brought to the target z; along the trgjectory of q_(#; z,) solution lying totally in
T~ switching curve. The time taken for the above mentioned transfer is given by
the formula:

T(207 ZUMZTLaZl) =
2/m(1-A) +y§  V2Ay a7
(1-A)ita 1-4 '

Index “1” in (4.7) informs that the time-optimal transfer has been done with
one switching operation only (see Figure 8).
Now, we are going to compare equations (4.6) with (4.7), i.e.

Tomin(yo, £1, A) = T1(yo, x1, A). (4.8

Expression (4.8) is equivalent to the following equation:

T1(yo, z1, A) =

rzyg +riyo+ro=0 (4.9
where

ra = 2(3—=2V2)A(1— A)(1+ V2 — A),

ro=22-V2)A1l-A)(2+V2 - A)\/leA(s +2V2) (14 A)(—2+2V2 + A)

ro = —2(3+ 2V2)z1(1— A%)(A - 2+ V2)%

Positive root of (4.9) isgiven by:

Yo = yo(z1, A) =

ri(1+ A) (82— (2— 24+ V2A)2+ 2v2+ 34 + 224
24 —2+2V2-3A+2/24 '

(4.10)

This completes the proof. [

The co-ordinate zg = :L"o(:L"l, A) of the state zg = (yo(xl, A), xo(xl, A)) € Ta
from which there start two trgjectories of two, nhon-unigue time-optimal solutions
we get after setting into (4.1) expression (4.10). We get:

zo = xo(z1, A) =

2
1 [ m(ar4) (42— (2-24+V24)\/2+2V2+34+2/24
2| 24 —2+42V2-3A4+2v24

(4.11)
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If A € (2—+/2,1) then repeating the same way of computing as that done
in the proof of Theorem 4.1 we state that there exists a subset of the states zg =
(zo,y0) € S~ from which there start the trajectories of non-unique time-optimal
solutions. These co-ordinates g, yo may be found from solution of 4-the degree
algebraic equation. Unfortunately, those co-ordinates cannot be defined in an open
form such asthat in the proof of Theorem 4.1, equations (4.10), (4.11). They may
be calculated in numerical way only.

From the point of view of time-optimal closed-loop system synthesis knowing
the values of these co-ordinates does not play an essential role. More important is
knowledge, that in the state plane there does exist the state from which there start
the non-unique time-optimal trgjectories. The singular phenomenon of existence
of non-unique time-optimal trajectories will be a basic point in the next paragraph
where there will be given some proposals as to practical applications.

5. Concluding Remarks

Knowledge of time-optimal solution playsan essential rolein practical applications.
Usually, thereis created a closed-loop system which attributes to each of the state
atime optimal value of the control function «. Thus, the open controlled system
z="f(z,u),ze R",u € U C R™ isreplaced by afeedback systemz = f(z, v(z)),
where control functionv : R™ — U. This way of feedback system synthesis is
based on so called Method of Regular Synthesis [2], [6] that establishes that: (a)
each time-optimal solution of the open controlled object z = f(z, u) is a standard
(Caratheodory) solution of the mentioned above closed-loop system z = f(z, v(z)),
(b) each standard solution of that closed-loop system is a time-optimal solution
of that open, controlled object. It should be emphasized that the above concept
application requires the uniqueness of time-optimal solution.

For the desirability of implementing the above closed-l1oop time-optimal system
the following reasons may be given: (1) Thereis no need to compute the optimal
control for every new initial state separately. (2) The controller acting upon z =
f(z,v(z)) is sensitive to instantaneous perturbations, i.e. if at any instant of the
processthe systemis deviated fromits optimal trajectory, the remaining portion of
the process will again lead to the desired final state (target) and will be optimal
with respect to this new initial state.

It should be strongly emphasized that the above concept of feedback system
application requires the uniqueness of time-optimal solution.

In the case investigated in this paper the unique time-optimal solution exists
merely if A < A, = 2 — /2. Then the closed-loop system may be synthesised in
standard way as shown previously in the text. Instead, if A € (2 — v/2,1) then
the switching operation of the control function should be executed on the curve
which cannot be formed by trajectory of any one solution of the system. Moreover,
there exists a set of the states from which there start the trajectories of non-unique
time-optimal solutions. In this case there is practically impossible to create the
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closed-loop system which generates the time-optimal control function depending
on the states of the investigated controlled object.

Thefeedback system of thetypez = f(z, v(z)) is very attractive from technical
point of view because of the properties shown above. If adesigner of the controlled
system may accomplish such a selection of the elements composing the controlled
system that the relation A < A, is satisfied then the feedback system takes a
standard form with switching curve formed in typical way. Instead, if such away
in treatment of synthesis process appears impossible, then a creation of the sub-
optimal feedback system acting with the use of standard switching curve becomes
the unique one way of suitable feedback system formation.
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